Teknik Bagging Dan Boosting Pada Algoritma CART Untuk Klasifikasi Masa Studi Mahasiswa
Main Article Content
Abstract
Undergraduate Students data in academic information systems always increases every year. Data collected can be processed using data mining to gain new knowledge. The author tries to mine undergraduate students data to classify the study period on time or not on time. The data is analyzed using CART with bagging techniqu, and CART with boosting technique. The classification results using 49 testing data, in the CART algorithm with bagging techniques 13 data (26.531%) entered into the classification on time and 36 data (73.469%) entered into the classification not on time. In the CART algorithm with boosting technique 16 data (32,653%) entered into the classification on time and 33 data (67,347%) entered into the classification not on time. The accuracy value of the classification of study period of undergraduate students using the CART algorithm is 79.592%, the CART algorithm with bagging technique is 81.633%, and the CART algorithm with boosting technique is 87.755%. In this study, the CART algorithm with boosting technique has the best accuracy value.
Article Details
References
Bisri, A., & Wahono, R. S. (2015). Penerapan Adaboost untuk penyelesaian ketidakseimbangan kelas pada Penentuan kelulusan mahasiswa dengan metode Decision Tree. Journal of Intelligent Systems, 1(1), 27–32.
Chao, W.-L., Liu, J.-Z., & Ding, J.-J. (2013). Facial age estimation based on label-sensitive learning and age-oriented regression. Pattern Recognition, 46(3), 628–641.
Faisal, M. R. (2016). Data Scienci Klasifikasi dengan Bahasa Pemrograman. Banjarmasin: INDC.
Kotsiantis, S. B., & Pintelas, P. E. (2009). Selective costing ensemble for handling imbalanced data sets. International Journal of Hybrid Intelligent Systems, 6(3), 123–133.
Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering, 30(1), 25–36.
Lewis, R. J. (2000). An introduction to classification and regression tree (CART) analysis. In Annual meeting of the society for academic emergency medicine in San Francisco (Vol. 14).
Liang, G., & Zhang, C. (2011). An Empirical Study of Bagging Predictors on Medical Data. In Proceedings of the Ninth Australasian Data Mining Conference (Vol. 121, pp. 31–40).
Nasution, N., Djahara, K., & Zamsuri, A. (2015). Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naïve Bayes (Studi Kasus: Fasilkom Unilak). Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 6(2), 1–11.
Prasetio, R. T., & Pratiwi, P. (2015). Penerapan Teknik Bagging pada Algoritma Klasifiikasi untuk Mengatasi Ketidakseimbangan Kelas Dataset Medis. Jurnal Informatika, 2(2), 395–403.
Salmu, S., & Solichin, A. (2017). Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu Menggunakan Naïve Bayes : Studi Kasus UIN Syarif Hidayatullah Jakarta. In Prosiding Seminar Nasional Multidisiplin Ilmu (Vol. 22).
Susanto, S., & Suryadi, D. (2010). Pengantar Data Mining. Yogyakarta: Penerbit Andi.
Timofeev, R. (2004). Classification an Regresion Trees Theory and Application. Humboldt University.
Weiss, G. M., McCarthy, K., & Zabar, B. (2007). Cost- Sensitive Learning vs. Sampling: Which is Best for Handling Unbalanced Classes with Unequal Error Costs? DMIN, 7, 35–41.
Yamasari, Y., Nugroho, S. M., Suyatno, D. F., & Purnomo, M. H. (2017). Meta-Algoritme Adaptive Boosting untuk Meningkatkan Kinerja Metode Klasifikasi pada Prestasi Belajar Mahasiswa. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI), 6(3), 333–341.
Yap, B. W., Rani, K. A., Rahman, H. A. A., Fong, S., Khairudin, Z., & Abdullah, N. N. (2014). An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets. In Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013) (pp. 13–22). Singapore: Spriger.