Analisa Performansi Protokol 802.11P Pada Routing AODV di Jaringan VANET (Vehicular Ad-hoc Network)

Main Article Content

Ahmad Ridwan


Intelligent Transportation Systems have experienced remarkable developments in the past decade, and advances in communication technology have a significant role in the success of intelligent transportation systems. Communication systems between vehicles are essential requirements for intelligent transportation systems. Vehicular Ad-hoc Network (VANET) technology is suitable for communication between vehicles. In its implementation, VANET faces several challenges such as disconnection, coverage area, dynamic topology changes, connectivity, signal strength, delay time, and throughput. One of the problems faced by VANET is routing. Routing on VANET is challenging due to high mobility, network topology disruption, and path selection. In this paper, simulation is conducted to obtain AODV routing performance on VANET networks based on the quality of service with scenarios 20 and 30 nodes. AODV routing was chosen because it has the best performance in its class. From the simulation results obtained an end to end delay 20 nodes 21,1247 and 30 nodes 22,0781, with an increase of period to end 4.5% occurs at 30 nodes compared to 20 nodes, packet drop obtained for 20 nodes 0.8284, and 30 nodes 0.7888 with a PDRR reduction ratio of 4.7% from 20 nodes. Furthermore, the throughput values obtained in the simulation are 20 nodes 272.59 and 30 nodes 347.92, with a rate of 20 and 30 nodes of 27%. Package delivery ratio for 20 nodes 2980, and 30 nodes 4868, with a standard of comparison of successful packages sent 38%.


Keywords: AODV, VANET, Intelligent Transportation System, Routing

Article Details

Author Biography

Ahmad Ridwan, Universitas Medan Area

Department Electrical Engineering, Universitas Medan Area


[1] C. Celes, F. A. Silva, A. Boukerche, R. M. D. C. Andrade, and A. A. F. Loureiro, “Improving VANET Simulation with Calibrated Vehicular Mobility Traces,” in IEEE Transactions on Mobile Computing, 2017, vol. 16, no. 12, pp. 3376–3389, doi: 10.1109/TMC.2017.2690636.
[2] A. K. Basil, M. Ismail, M. A. Altahrawi, H. Mahdi, and N. Ramli, “Performance of AODV and OLSR Routing Protocols in VANET under Various Traffic Scenarios,” in 2017 IEEE 13th Malaysia International Conference on Communications, MICC 2017, 2018, vol. 2017-Novem, no. Micc, pp. 107–112, doi: 10.1109/MICC.2017.8311742.
[3] P. F. Zhao, K. Liu, Y. Zhang, T. Zhang, and F. Liu, “A Clustering-Based Fast and Stable Routing Protocol for Vehicular Ad Hoc Networks,” in Journal of Physics: Conference Series, 2018, vol. 1060, no. 1, doi: 10.1088/1742-6596/1060/1/012050.
[4] M. Yusuf and R. Anggoro, “Analisis Perbandingan Wireless Network Standard 802.11a dan 802.11p Berdasarkan Protokol Dynamic Source Routing di Lingkungan Vehicular Ad hoc Networks,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 3, no. 2, pp. 75–82, 2017, doi: 10.26594/register.v3i2.1040.
[5] M. Dimyati, R. Anggoro, and W. Wibisono, “Pemilihan Node Rebroadcast Untuk Meningkatkan Kinerja Protokol Multicast AODV (MAODV) Pada VANETs,” JUTI J. Ilm. Teknol. Inf., vol. 14, no. 2, p. 198, 2016, doi: 10.12962/j24068535.v14i2.a572.
[6] R. Ratnasih, R. M. N. Ajinegoro, and D. Perdana, “Analisis Kinerja Protokol Routing AOMDV pada VANET dengan Serangan Rushing,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 6, no. 2, p. 232, 2018, doi: 10.26760/elkomika.v6i2.232.
[7] S. Smiri, A. Boushaba, R. Ben Abbou, and A. Zahi, “Performance Analysis of Routing Protocols with Roadside Unit Infrastructure in a Vehicular Ad hoc Network,” Int. J. Comput. Networks Commun., vol. 12, no. 4, pp. 19–39, 2020, doi: 10.5121/ijcnc.2020.12402.
[8] Ahmad Ridwan, R. Ferdian, and Rahmadi Kurnia, “Optimization of the LEACH Protocol to Increase Stability on the Wireless Sensor Network,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 192–200, 2020, doi: 10.29207/resti.v4i1.1514.
[9] R. N. Aziza, P. C. Siswipraptini, and R. Cahyaningtyas, “Protokol Routing Pada VANET: Taksonomi Dan Analisis Perbandingan Antara DSR, AODV, dan TORA,” J. Ilm. FIFO, vol. 9, no. 2, p. 98, 2017, doi: 10.22441/fifo.2017.v9i2.002.
[10] R. Anisia, R. Munadi, and R. M. Negara, “Analisis Performansi Routing Protocol OLSR Dan AOMDV Pada Vehicular Ad Hoc Network (VANET),” J. Nas. Tek. Elektro, vol. 5, no. 1, p. 87, 2016, doi: 10.25077/jnte.v5n1.204.2016.
[11] M. Sayuti and N. Adriman, Ramzi, “Analisis Performansi Protokol Routing Vehicular Network Menggunakan Algoritma Ant Colony Jamak,” JUSTIN (Jurnal Sist. dan Teknol. Informasi), vol. 09, no. 2, pp. 282–288, 2021, doi: 10.26418/justin.v9i2.44273.
[12] J. J. Ferronato and M. A. S. Trentin, “Analysis of Routing Protocols OLSR, AODV and ZRP in Real Urban Vehicular Scenario with Density Variation,” in IEEE Latin America Transactions, 2017, vol. 15, no. 9, pp. 1727–1734, doi: 10.1109/TLA.2017.8015079.
[13] R. Hadiwiriyanto, P. H. Trisnawan, and K. Amron, “Implementasi Protokol Geographic Source Routing (GSR) Pada Vehicular Ad-Hoc Network (VANET) untuk Komunikasi Kendaraan Dengan Road Side Unit (RSU),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 12, pp. 7007–7016, 2018.
[14] Z. Ding, P. Ren, and Q. Du, “Mobility Based Routing Protocol with MAC Collision Improvement in Vehicular Ad Hoc Networks,” in 2018 IEEE International Conference on Communications Workshops, ICC Workshops 2018 - Proceedings, 2018, pp. 1–6, doi: 10.1109/ICCW.2018.8403517.