Analisis Sentimen Terhadap Kemajuan Kecerdasan Buatan di Indonesia Menggunakan BERT dan RoBERTa
Main Article Content
Abstract
Kecerdasaan buatan/Artificial Intelligence (AI) dalam beberapa tahun belakang menjadi pro dan kontra. Banyak pihak yang menyambut baik kemajuan AI karena dapat membantu meningkatkan kinerja tetapi tidak sedikit yang beranggapan AI dapat menjadi ancaman yang akan membuat Masyarakat dengan pendidikan rendah terancam dalam hal penyaluran pekerjaan dan aspek lainnya. Prespektif tersebut muncul hampir disemua platfom sosial media untuk menyampaikan tanggapan. Pada penelitian yang dilakukan peneliti memanfaatkan analisis sentimen sehingga dapat menggambarkan sentimen pada masyarakat dengan manfaatkan komentar masyarakat di kolom komentar YouTube sebagai objek penelitian dikarekan relevansi dengan topik sebesar 60-80%. Penelitian yang dilakukan menggunakan Transformers BERT dan RoBERTa untuk labeling 5796 data yang dikumpulkan serta mengevaluasi menggunakan model indobenchmark/indobert-base-p1 dan flax-community/indonesian-roberta-base. Dari hasil ujicoba didapatkan BERT indobenchmark/indobert-base-p1 menjadi algoritma dengan kinerja lebih baik pada skema 1 mendapatkan akurasi validasi 84%, akurasi testing 83% serta skema 2 mendapatkan akurasi validasi 83%, akurasi testing 84% dibandingkan RoBERTa flax-community/indonesian-roberta-base berbahasa Indonesia meskipun algoritma tersebut merupakan hasil perkembangan dari BERT. Hasil penelitian yang dilakukan peneliti juga mendapatkan sentiment negatif lebih dominan sebesar 53,6% hasil labeling Transformers BERT dan 52.2% dari hasil Transformers RoBERTa dibandingkan sentimen netral dan positif. Sehingga peneliti menyarankan adanya keterlibatan pemangku kebijakan untuk memberikan batasan yang jelas terkait penggunaan AI.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
X. Chen, D. Zou, H. Xie, G. Cheng, and C. Liu, “Two decades of artificial intelligence in education,” Educational Technology & Society, vol. 25, no. 1, pp. 28–47, 2022.
D. Manongga, U. Rahardja, I. Sembiring, N. Lutfiani, and A. B. Yadila, “Dampak Kecerdasan Buatan Bagi Pendidikan,” ADI Bisnis Digital Interdisiplin Jurnal, vol. 3, no. 2, pp. 41–55, 2022.
F. E. N. Saputro and F. S. Nugraha, “Prediksi Penjualan Kopi Berdasarkan Cuaca Menggunakan Association Rule dan Algoritma FP Growth,” Jurnal Ilmiah Media Sisfo, vol. 17, no. 1, pp. 1–8, 2023.
A. Ardiansyah and N. F. Hasan, “Deteksi dan Klasifikasi Penyakit Pada Daun Kopi Menggunakan Yolov7,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 12, no. 1, pp. 30–35, Mar. 2023, doi: 10.32736/sisfokom.v12i1.1545.
K. N. Qodri, I. Soesanti, and H. A. Nugroho, “Image analysis for MRI-based brain tumor classification using deep learning,” IJITEE (International Journal of Information Technology and Electrical Engineering), vol. 5, no. 1, pp. 21–28, 2021.
D. Kovačević, “Use of ChatGPT in ESP Teaching Process,” in 2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH), IEEE, Mar. 2023, pp. 1–5. doi: 10.1109/INFOTEH57020.2023.10094133.
I. Ahmed, G. Jeon, and F. Piccialli, “From artificial intelligence to explainable artificial intelligence in industry 4.0: a survey on what, how, and where,” IEEE Trans Industr Inform, vol. 18, no. 8, pp. 5031–5042, 2022.
M. Webb, “The impact of artificial intelligence on the labor market,” Available at SSRN 3482150, 2019.
P. Aghion, C. Antonin, and S. Bunel, “Artificial intelligence, growth and employment: The role of policy,” Economie et Statistique/Economics and Statistics, no. 510-511–512, pp. 150–164, 2019.
N. Lutfianti, “Penerapan Sentimen Analisis Dengan Algoritma SVM Dalam Tanggapan Netizen Terhadap Berita Resesi 2023,” SISFOTENIKA, vol. 13, no. 1, pp. 53–64, 2023.
S. Sumayah, F. Sembiring, and W. Jatmiko, “Analysis Of Sentiment Of Indonesian Community On Metaverse Using Support Vector Machine Algorithm” Jurnal Teknik Informatika (Jutif), vol. 4, no. 1, pp. 143–150, 2023.
H. Al Jannah and D. Hermawan, “Analysis of Indonesian Society’s Perceptions of the COVID-19 Vaccine in Youtube Comments Using Machine Learning Algorithms,” in 2022 3rd International Conference on Artificial Intelligence and Data Sciences (AiDAS), IEEE, 2022, pp. 72–77.
M. Rodríguez-Ibánez, A. Casánez-Ventura, F. Castejón-Mateos, and P.-M. Cuenca-Jiménez, “A review on sentiment analysis from social media platforms,” Expert Syst Appl, vol. 223, p. 119862, Aug. 2023, doi: 10.1016/j.eswa.2023.119862.
L. M. Azizah, D. B. Ajipratama, N. A. R. Putri, and C. Damarjati, “Analisa Sentimen Masyarakat Terhadap Kebijakan Vaksinasi Covid-19 Di Indonesia Pada Twitter Menggunakan Algoritma LSTM La,” JURNAL IPTEKKOM (Jurnal Ilmu Pengetahuan & Teknologi Informasi), vol. 24, no. 2, pp. 161–172, 2022.
O. Mohamed, A. M. Kassem, A. Ashraf, S. Jamal, and E. H. Mohamed, “An ensemble transformer-based model for Arabic sentiment analysis,” Soc Netw Anal Min, vol. 13, no. 1, Dec. 2023, doi: 10.1007/s13278-022-01009-0.
D. Srivastava and V. K. Soni, “A systematic review on sentiment analysis approaches,” in 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), IEEE, 2022, pp. 1–6.
D. Sebastian, H. D. Purnomo, and I. Sembiring, “BERT for Natural Language Processing in Bahasa Indonesia,” in 2022 2nd International Conference on Intelligent Cybernetics Technology and Applications, ICICyTA 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 204–209. doi: 10.1109/ICICyTA57421.2022.10038230.
Y. Shen and J. Liu, “Comparison of text sentiment analysis based on bert and word2vec,” in 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC), IEEE, 2021, pp. 144–147.
A. S. Widagdo, K. N. Qodri, and F. E. N. Saputro, “Analisis sentimen terhadap pelayanan Kesehatan berdasarkan ulasan Google Maps menggunakan BERT,” JURNAL FASILKOM, vol. 13, no. 02, pp. 326–333, 2023.
A. S. Wisnubroto, A. Saifunas, A. B. Santoso, P. K. Putra, and I. Budi, “Opinion-based sentiment analysis related to 2024 Indonesian Presidential Election on YouTube,” in 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), IEEE, 2022, pp. 318–323.
H. M. Lee and Y. Sibaroni, “Comparison of IndoBERTweet and Support Vector Machine on Sentiment Analysis of Racing Circuit Construction in Indonesia,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 1, pp. 99–106, 2023.
J. Sirusstara, N. Alexander, A. Alfarisy, S. Achmad, and R. Sutoyo, “Clickbait Headline Detection in Indonesian News Sites using Robustly Optimized BERT Pre-training Approach (RoBERTa),” in 2022 3rd International Conference on Artificial Intelligence and Data Sciences: Championing Innovations in Artificial Intelligence and Data Sciences for Sustainable Future, AiDAS 2022 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 248–253. doi: 10.1109/AiDAS56890.2022.9918678.
M. Birjali, M. Kasri, and A. Beni-Hssane, “A comprehensive survey on sentiment analysis: Approaches, challenges and trends,” Knowl Based Syst, vol. 226, p. 107134, 2021.
T. Chen, L. Song, H. Zhou, Y. Li, H. Wang, and C. Kong, “A Study of Mental Health Self-Monitoring Based on the Combination of BERT and Low-Code Platform,” in 2023 6th World Conference on Computing and Communication Technologies, WCCCT 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 171–175. doi: 10.1109/WCCCT56755.2023.10052392.
R. Man and K. Lin, “Sentiment analysis algorithm based on BERT and convolutional neural network,” in 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), IEEE, 2021, pp. 769–772.
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
Y. Liu et al., “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
H. Nuraliza, O. N. Pratiwi, and F. Hamami, “Analisis Sentimen IMBd Film Review Dataset Menggunakan Support Vector Machine (SVM) dan Seleksi Feature Importance,” Jurnal Mirai Management, vol. 7, no. 1, pp. 1–17, 2022.
H. Singh, K. P. S. Attwal, and M. Lal, “Sentiment Analysis Tools and Techniques: A Review,” in 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), IEEE, 2022, pp. 424–427.
A. S. Widagdo, B. S. WA, and A. Nasiri, “Analisis tingkat kepopuleran e-commerce di indonesia berdasarkan sentimen sosial media menggunakan metode naïve bayes,” Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat, vol. 6, no. 1, pp. 1–5, 2020.
A. Mahgoub et al., “Sentiment Analysis: Amazon Electronics Reviews Using BERT and Textblob,” in 2022 20th International Conference on Language Engineering (ESOLEC), IEEE, 2022, pp. 6–10.
Y. Gong, G. Liu, Y. Xue, R. Li, and L. Meng, “A survey on dataset quality in machine learning,” Inf Softw Technol, vol. 162, p. 107268, 2023, doi: https://doi.org/10.1016/j.infsof.2023.107268.