Implementasi Algoritma Learning Vector Quantization untuk Deteksi Dini Penyakit Mata

Main Article Content

Mansur Mansur
Najirah Umar
Sitti Zuhriyah

Abstract

The eye is one of the senses of human vision that is very important in human life. The lack of online eye health consultation services is often ignored by the public because it considers eye diseases not to be dangerous diseases and have no impact on everyday life. On this issue, then developed an eye disease detection system using the Learning Vector Quantization method. (LVQ). This method is capable of giving a classification of patterns that would represent a particular class. In this study, there are 25 symptoms and 10 eye diseases that will be processed in training and testing with the data being divided into training and test data. The LVQ method will perform several steps to obtain the final weight. Using the LVQ method, the parameter values obtained include Learning rate 0.1, 0.2, Iteration 1 and 2. In the accuracy test of this system, the average accuracy result received with the training data 90 Iterations 2 Learning rates 0.1, testing of the test data 19 yielded accuration of 100% and Iterating 2 Learning rate 0,2 testing of testing data 19 was accurate of 100%. which indicates that the system can function properly. So the LVQ method can be applied to the classification of eye diseases.

Article Details

Section
Articles

References

[1] Y. Zheng, X. Wu, X. Lin, and H. Lin, “The Prevalence of Depression and Depressive Symptoms Among Eye Disease Patients: A Systematic Review and Meta-Analysis,” Sci. Rep., vol. 7, no. 1, pp. 1–9, 2017, doi: 10.1038/srep46453.

[2] F. E. Hakim and A. V. Farooq, “Dry Eye Disease: An Update in 2022,” JAMA, vol. 327, no. 5, pp. 478–479, 2022, doi: 10.1001/jama.2021.19963.

[3] Z. Al-Mohtaseb, S. Schachter, B. S. Lee, J. Garlich, and W. Trattler, “The Relationship Between Dry Eye Disease and Digital Screen Use,” Clin. Ophthalmol., vol. 15, pp. 3811–3820, 2021, doi: 10.2147/OPTH.S321591.

[4] W. B. Zulfikar and N. Lukman, “Perbandingan Naive Bayes Classifier Dengan Nearest Neighbor Untuk Identifikasi Penyakit Mata,” J. Online Inform., vol. 1, no. 2, pp. 82–86, 2016, doi: 10.15575/join.v1i2.33.

[5] D. Lukitaningtyas, E. Kurniasih, and Pariyem, “Deteksi Dini Dan Monitoring Penyakit Degeneratif Diabetes Melitus Di Dusun Pilangpayung I , Desa Geneng Kec. Geneng Kabupaten Ngawi,” J. Kreat. Pengabdi. Kpd. Masy., vol. 5, no. 12, pp. 4551–4557, 2022.

[6] A. S. Rahman, E. Budianita, R. M. Candra, and F. Syafria, “Penerapan Learning Vector Quantization 3 Dalam Menentukan Bakat Anak,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 3, pp. 408–414, 2022, doi: 10.32672/jnkti.v5i3.4398.

[7] N. Manome, S. Shinohara, T. Takahashi, Y. Chen, and U. Chung, “Self-Incremental Learning Vector Quantization With Human Cognitive Biases,” Sci. Rep., vol. 11, no. 3910, pp. 1–12, 2021, doi: 10.1038/s41598-021-83182-4.

[8] K. A. Muzaqi, A. Junaidi, and W. A. Saputra, “Klasifikasi Status Gizi Pada Lansia Menggunakan Learning Vector Quantization 3 (LVQ 3),” J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 2, no. 1, pp. 28–36, 2022, doi: 10.20895/dinda.v2i1.272.

[9] S. N. Indawaty, E. A. Ningsih, and M. Purwoko, “Gambaran Penyakit Mata Yang Menyertai Penyakit Diabetes Mellitus Tipe II Pada Lansia,” Syifa’ Med., vol. 10, no. 2, pp. 135–140, 2020.

[10] N. Usman, M. Bunyamin, A. Ambarita, and M. Abdurahman, “Sistem Diagnosa Penyakit Mata Berbasis Web (Pendekatan Hasil Dan Penelusuran Gejala) Menggunakan Metode Certainty Factor (Cf) Pada Apotik Janji Meuham Kota Ternate,” IJIS-Indonesian J. Inf. Syst., vol. 7, no. 2, pp. 110–121, 2022, doi: 10.36549/ijis.v7i2.224.

[11] A. Casey and S. Marina, “Klasifikasi, Diagnosis, dan Pengobatan Saat Ini untuk Penyakit Mata Kering: Tinjauan Pustaka,” Intisari Sains Medis, vol. 12, no. 2, pp. 640–644, 2021, doi: 10.15562/ism.v12i2.998.

[12] A. E. Suwanda and D. Juniati, “Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Retina Menggunakan Dimensi Fraktal Box Counting Dan Fuzzy K-Means,” J. Penelit. Mat. dan Pendidik. Mat., vol. 5, no. 1, pp. 10–18, 2022.

[13] E. Andreas and W. Widhiarso, “Klasifikasi Penyakit Mata Katarak Menggunakan Convolutional Neural Network Dengan Arsitektur Inception V3,” in The 2nd MDP Student Conference 2023, Universitas Multi Data Palembang, 2023, pp. 107–113. doi: 10.35957/mdp-sc.v2i1.3660.

[14] N. A. Sagat and A. S. Purnomo, “Sistem Pakar Diagnosa Penyakit Mata Menggunakan Metode Teorema Bayes,” J. Pendidik. dan Teknol. Indones., vol. 1, no. 8, pp. 329–337, 2021, doi: 10.52436/1.jpti.73.

[15] W. Winarto, “Implementasi Image Processing Dengan Metode Learning Vector Quantization Untuk Aplikasi Pengenalan Buah-Buahan,” Universitas Teknologi Yogyakarta, 2020.

[16] M. Nilashi et al., “Electroencephalography (EEG) Eye State Classification Using Learning Vector Quantization and Bagged Trees,” Heliyon, vol. 9, no. 4, 2023, doi: 10.1016/j.heliyon.2023.e15258.

[17] S. Rahmatullah, D. S. Purnia, and A. Suryanto, “Sistem Pakar Untuk Mendiagnosa Penyakit Mata Dengan Metode Forward Chaining,” SPEED - Sentra Penelit. Eng. dan Edukasi, vol. 10, no. 2, pp. 56–62, 2018, doi: 10.55181/speed.v10i2.279.

[18] S. Ilyas and S. R. Yulianti, Ilmu Penyakit Mata Edisi ke Lima. Jakarta: Balai Penerbit FKUI, 2014.

[19] M. N. I. Muhlashin and A. Stefanie, “Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Menggunakan YOLO V8,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1363–1368, 2023, doi: 10.36040/jati.v7i2.6927.

[20] M. Heusinger, C. Raab, and F.-M. Schleif, “Passive Concept Drift Handling Via Variations of Learning Vector Quantization,” Neural Comput. Appl., vol. 34, pp. 89–100, 2022, doi: 10.1007/s00521-020-05242-6.